CHAPTER 05: STEREOCHEMISTRY

I. Chirality and Stereocenters

We have already seen constitutional (different connectivity) and geometric (cis/trans) isomers.

In this chapter we will look at:

- **Stereoisomers** are molecules that have the same bonding sequence, but they differ in orientation in space.
 - Stereoisomers can often have drastically different physical, chemical, and biological properties:

Chirality (Handedness)

- Your right and left hands are mirror images that are not superimposable are known as enantiomers.

- **Enantiomers** are non-superimposable mirror images.
 - A molecule can only have one enantiomer (enantiomers exist as pairs, like right and left hands).

- Chiral objects are not superimposable on their mirror images.

- Achiral objects are superimposable on their mirror images.
There are two ways to determine if a molecule is chiral.

1. Ultimate test → Test to see if mirror images are superimposable.
 Example 1: Are these molecules stereoisomers?

Example 2: Are these molecules stereoisomers?

2. Quick Test → Look for a mirror plane of symmetry (aka mirror plane). This is a plane that divides an object into two equal halves that are mirror images.

CASE #1

CASE #2

 Scenario A:

 Scenario B:

Summary:
II. R/S Nomenclature for Configurations of Stereocenters (Cahn-Ingold-Prelog System)

A. Assigning Group Priorities for R/S Nomenclature Rules

1. Assign Priority to each group attached to the asymmetric carbon. (1 = high, 4 = low)
 a. Atoms with higher atomic numbers receive higher priorities.

 I > Br > Cl > S > F > O > N > 13C > 12C > Li > etc...
 53 > 35 > 17 > 16 > 9 > 8 > 7 > 13 > 12 > 3 > etc...
 (13C is larger than 12C)

2. In case of ties, go to the 2nd atom and then the 3rd etc..until the first difference is found.

3. Treat double and triple bonds as if each were a bond to a separate atom. (listed in order from low to high….)

4. Place lowest priority (4) group in the back. Connect 1, 2, 3 and if:
 i. Clockwise = “R”
 ii. Counterclockwise = “S”
What if a molecule has more than one stereocenter?

- In general, a molecule with “n” number of stereocenters can exist as a maximum of 2^n stereoisomers.
- It can have fewer than the maximum because of MESO compounds, which will be stereoisomers of the molecule but are not chiral as we shall see shortly…

III. Stereoisomers and Fischer Projections

Drawing Fischer Projections:

Important

- Horizontal lines are ________________________________.
- Vertical lines are ________________________________.

More complicated Examples

1) Rotate the longest carbon chain so that it is eclipsed along every bond.

2) Put the longest carbon chain vertically with carbon 1 at the top.
 - (C#1 is the most highly oxidized form of carbon)
 - In general...COOH>CHO>CH$_2$OH>CH$_3$
3) Look at the molecule from the bottom of the U-shaped bonds (from the “spine”). Imagine stretching the chain out flat and “smashing” flat onto plane of the paper.

4) Draw the longest carbon chain as a line, use crossing lines for every stereocenter. Do not write a “C” atom label at the crosses.

Example:

Rules for Comparing Fischer Projections:
Example:

IV. Other Types of Steroisomers

- **Diastereomers**: Stereoisomers that are not enantiomers.

1. **Meso Compounds**

 A molecule with a mirror plane of symmetry will not be chiral even if it has stereocenters.

 Example:
2. Molecules with Double Bonds (Cis-trans isomers)

3. Cycloalkanes and Other Rings (Cis-trans isomers)

4. Molecules with Multiple Stereocenters

A molecule with two or more stereocenters will be chiral if it does not have a mirror plane of symmetry.

Example:

5. It is possible for a molecule to be chiral even if it does not have a stereocenter. These are usually molecules that have twisted or helical structures or that have restricted rotation.
6. Conformations, Symmetry, and Chirality

Sometimes, a molecule can appear to be chiral because of its conformation. If you can rotate around the bond or ring flip, then it is just a conformational isomer.

V. Optical Rotation and Optical Activity

A. Plane-Polarized Light

- Light is made of waves of electricity and magnetism…

- In a regular beam of light, the electric wave of an individual photon can oscillate in any direction.

- This gives the beam of light, which is composed of many photons, the appearance of simultaneously oscillating in all possible directions (all possible orientations)
- A polarizing “filter” can be used to **align** photons that are not oscillating in a specific planar orientation into a specific direction.

- Photons that are oscillating at 90° to the filter are effectively eliminated.

- The resulting beam has photons that are vibrating in only one specific direction.
 - This is called ________________________________.

Polarizing filters can have interesting effects on light:

Two polarized filters with their axes parallel.

Two polarized filters with their axes perpendicular.

Two polarizers, 1 and 2 with perpendicular axes, and third polarizer between them, axis at 45° to the other two.
B. Optical Rotation

- **Chiral molecules rotate plane-polarized light.** If a beam of polarized light is passed through a sample of a chiral molecule, the plane of its oscillation will be rotated so that it oscillates in a different direction:

 ![Optical Rotation Diagram]

 - The *observed rotation* \(\alpha_{\text{obs}} \) is the angle that the light is rotated by a given sample.

 - **Specific rotation** \([\alpha]_D \): the angle that light is rotated by a pure single enantiomer of a substance at a standard concentration, cell length, and wavelength:

 \[
 \alpha_{\text{obs}} = \text{specific rotation} \times \text{cell length} \times \text{wavelength}.
 \]

- When a sample has a mixture of the two enantiomers of a compound, \(\alpha_{\text{obs}} \) will be less than the maximum possible rotation \([\alpha]_D \).

- A **racemic mixture** is a mixture that contains the two enantiomers of a chiral compound in equal amounts.
 - A 50:50 mixture of enantiomers = \(\alpha_{\text{obs}} \) of 0°:
 - A racemic mixture is sometimes indicated by (±) in front of the name.
VI. Stereochemical Consequences of Radical Halogenation

- When a stereocenter is produced at a carbon that is planar in either the reactant or intermediates, a mixture of configurations will be produced.

EXAMPLE:

<table>
<thead>
<tr>
<th>Properties of Enantiomers and Diastereomers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enantiomers</td>
</tr>
<tr>
<td>- Similar Physical Properties</td>
</tr>
<tr>
<td>MP, BP, Refractive Index, Density</td>
</tr>
<tr>
<td>One difference = rotation of polarized light (+/-)</td>
</tr>
<tr>
<td>- Have to use chemical means to separate</td>
</tr>
<tr>
<td>Different interactions with other chiral molecules</td>
</tr>
</tbody>
</table>

© John Congleton, Orange Coast College